
GPU Acceleration of the
Longwave Rapid Radiative

Transfer Model in WRF
using CUDA Fortran

G. Ruetsch, M. Fatica, E. Phillips,
N. Juffa

© NVIDIA Corporation 2011

Outline

WRF and RRTM
Previous Work
CUDA Fortran Features
RRTM in CUDA Fortran
Results

Batched Solver for Small Matrix Problems

Hot of the Press

© NVIDIA Corporation 2011

WRF and RRTM

WRF (Weather Research and Forecast) is a mesoscale numerical
weather prediction code designed for both operational
forecasting and the research community with a broad spectrum
of applications and multiple physics options.

Longwave RRTM (Rapid Radiative Transport Model) is an
optional model that computes the energy transfer through the
atmosphere due to electromagnetic radiation

Uses look-up tables for efficiency
Separates calculation into 16 spectral bands

© NVIDIA Corporation 2011

RRTM - Previous Work

RRTM proposed as benchmark kernel
http://www.mmm.ucar.edu/wrf/WG2/GPU/
Contains only CPU code

Initial GPU port to CUDA Fortran on PGI’s website
http://www.pgroup.com/resources/accel_files/list.htm
One of several WRF components on PGI Accelerator Files site
Contains CUDA Fortran source code and white paper
Based on C1060 and early version (10.1) of the CUDA Fortran compiler

© NVIDIA Corporation 2011

CUDA and CUDA Fortran

CUDA programming model
Heterogenous programming model

Use both CPU and GPU, which have different memory spaces
Allows for incremental development

Scalable programming model
Programs runs on any number of processors without recompiling
Write a program for one thread, instantiate on many parallel threads

CUDA Fortran is the Fortran analog of CUDA C
Implemented in PGI’s Fortran compiler
Program host and device code similar to CUDA C
Host code is based on Runtime API
Fortran language extensions to simplify data management

© NVIDIA Corporation 2011

RRTM Components

RRTM has the following steps

INIRAD: computes the ozone mixing ratio distributions
MM5ATM: provides atmospheric profiles
SETCOEF: calculates various quantities needed for the radiative transfer
algorithm
GASABS: calculates gaseous optical depths and Planck functions

Computed in 16 spectral bands
RTRN: calculate the radiative transfer for both clear and cloudy columns

Radiation only depends on data in the same vertical column
GPU exploits this parallelism

© NVIDIA Corporation 2011

Data Layout
CPU Layout GPU Layout

j

i
k

A(i,k,j)

Outer loops over (i,j)

Extract 1D arrays in k and
send to RRTM

k

i
j

Reorder to A(i,j,k) after transfer

For rtrn():
launch nx*ny threads, each thread

calculates one column

All other routines:
launch nx*ny*nz threads

© NVIDIA Corporation 2011

Recent Changes

Fermi architecture
-Mcuda=cc20
L1 cache

64KB allotment set to 48KB L1 cache and 16KB shared memory
Lookup tables changed from constant to device arrays

constant still used for physical constants (scalar values)

CUDA Fortran additions
Pinned host memory used for large arrays (faster transfer, enables
asynchronous transfers)

add pinned attribute to variable declarations

© NVIDIA Corporation 2011

Results

Performed on system with
Two quad-core Xeon X5550 CPUs (2.67 GHz)
Tesla M2050 (Fermi) GPU (448 cores, 1.15 GHz, 3GB memory)
Tesla M2090 (Fermi) GPU (512 cores, 1.3 GHz, 6GB memory)
PGI 11.8 compilers
CPU code from http://www.mmm.ucar.edu/wrf/WG2/GPU/

Utilizes a single CPU core

Input data is on a (nx,nz,ny) mesh with nx=73, nz=28, ny=60

© NVIDIA Corporation 2011

Results

Overall
time (ms)
% time in
gasabs()
% time in

rtrn()

Previous StudyPrevious Study Current ResultsCurrent ResultsCurrent ResultsCurrent ResultsCurrent Results
X5440 Tesla C1060 X5550 Tesla M2050Tesla M2050 Tesla M2090Tesla M2090

-fast Baseline -fast Baseline Modified Baseline Modified

703 83 479 44 38 41 34

56% 31% 52% 21% 22% 21% 21%

28% 46% 27% 48% 45% 44% 43%

Tesla M2050/M2090 Baseline: code from previous study, recompiled with 11.8
Tesla M2050/M2090 Modified: items in Recent Changes implemented

© NVIDIA Corporation 2011

Conclusions and Future Work

Conclusions
Good speedup for a small problem
Data reordering is key

Leverage separate memory space (host data unchanged)
Reordering fast on device

Future Work
Add asynchronous data transfers to hide communication
Textures are coming to CUDA Fortran

Possibility for lookup tables
Utilize CPU and GPU

– Lookup tables

© NVIDIA Corporation 2011

Batched Solver for Small Matrices

Motivated by chemical simulation containing ~20 species
Independent system is solved at each grid point

LU decomposition, Gaussian and Gauss-Jordan elimination
Dense matrices
Partial pivoting
Routine chosen based on matrix size and hardware

Double precision (and double-complex)
Code will be available at http://nvdeveloper.nvidia.com

© NVIDIA Corporation 2011

Batched Solver Implementation

Each system is mapped to a thread block
Each thread in a thread block can work on multiple matrix
elements

One matrix element per thread most efficient for small matrices
Pivoting via two-stage process

Configurable number of threads finds maximum of elements assigned to
them, and write these intermediate values to shared memory
All threads redundantly find the maximum of the intermediate values
Can be turned off for diagonally dominant matrices

© NVIDIA Corporation 2011

Batched Solver Performance

GPU Acceleration of the
Longwave Rapid Radiative

Transfer Model in WRF
using CUDA Fortran

G. Ruetsch, M. Fatica, E. Phillips,
N. Juffa

